3G cell phone radiation damages nasal mucosa & mucociliary clearance in rats
The effects of 2100-MHz radiofrequency radiation on nasal mucosa and mucociliary clearance in rats.
Aydoğan F, Aydın E, Koca G, Özgür E, Atilla P, Tüzüner A, Demirci Ş, Tomruk A, Öztürk GG, Seyhan N, Korkmaz M, Müftüoğlu S, Samim EE. The effects of 2100-MHz radiofrequency radiation on nasal mucosa and mucociliary clearance in rats. Int Forum Allergy Rhinol. 2015 Apr 16. doi: 10.1002/alr.21509. [Epub ahead of print].
Abstract
BACKGROUND: Nasal mucociliary clearance has an important role in voiding the airways from inhaled foreign substances. This activity could be disturbed by environmental factors such as radiofrequency radiation. The aim of the present study was to investigate short-term and relatively long-term effects of 2100-MHz radiofrequency radiation emitted by a generator, simulating a 3G-mobile phone, on the nasal septal mucosa and mucociliary clearance in rats.
METHODS: Thirty Wistar albino rats were divided into 4 groups. There were 6 rats in Group A and Group B, which served as the control groups (10-day and 40-day groups, respectively). Groups C (10-day exposure) and D (40-day exposure) were both composed of 9 rats; they comprised the radiofrequency radiation exposure groups. The rats in groups C and D were exposed to 2100-MHz radiofrequency radiation emitted by a generator, simulating a 3G-mobile phone, 6 hours/day, for 10 or 40 days, respectively. After exposure, nasal mucociliary clearance was measured by rhinoscintigraphy. After euthanization, the nasal septa of the animals were removed, and tissue samples of the nasal mucosa were examined using a transmission electron microscope.
RESULTS: The differences in mucociliary clearances between groups A and C, groups B and D, and groups C and D were found to be statistically significant (p = 0.005, p < 0.001, p < 0.001, respectively). Although there were no histopathological abnormalities in the control groups, the exposure groups showed a number of degenerated and apoptotic cells, ciliary disorganization and ciliary loss in the epithelial cells, epithelial metaplasia, alteration of normal chromatin distribution and karyolysis in nuclei, changes in the basal cells, and lymphocytic infiltration. The histopathological changes were more severe in group D.
CONCLUSION: Radiofrequency radiation at 2100 MHz damaged the nasal septal mucosa, and disturbed the mucociliary clearance. Ciliary disorganization and ciliary loss in the epithelial cells resulted in deterioration of nasal mucociliary clearance.
http://1.usa.gov/1HM93v5
Aydoğan F, Aydın E, Koca G, Özgür E, Atilla P, Tüzüner A, Demirci Ş, Tomruk A, Öztürk GG, Seyhan N, Korkmaz M, Müftüoğlu S, Samim EE. The effects of 2100-MHz radiofrequency radiation on nasal mucosa and mucociliary clearance in rats. Int Forum Allergy Rhinol. 2015 Apr 16. doi: 10.1002/alr.21509. [Epub ahead of print].
Abstract
BACKGROUND: Nasal mucociliary clearance has an important role in voiding the airways from inhaled foreign substances. This activity could be disturbed by environmental factors such as radiofrequency radiation. The aim of the present study was to investigate short-term and relatively long-term effects of 2100-MHz radiofrequency radiation emitted by a generator, simulating a 3G-mobile phone, on the nasal septal mucosa and mucociliary clearance in rats.
METHODS: Thirty Wistar albino rats were divided into 4 groups. There were 6 rats in Group A and Group B, which served as the control groups (10-day and 40-day groups, respectively). Groups C (10-day exposure) and D (40-day exposure) were both composed of 9 rats; they comprised the radiofrequency radiation exposure groups. The rats in groups C and D were exposed to 2100-MHz radiofrequency radiation emitted by a generator, simulating a 3G-mobile phone, 6 hours/day, for 10 or 40 days, respectively. After exposure, nasal mucociliary clearance was measured by rhinoscintigraphy. After euthanization, the nasal septa of the animals were removed, and tissue samples of the nasal mucosa were examined using a transmission electron microscope.
RESULTS: The differences in mucociliary clearances between groups A and C, groups B and D, and groups C and D were found to be statistically significant (p = 0.005, p < 0.001, p < 0.001, respectively). Although there were no histopathological abnormalities in the control groups, the exposure groups showed a number of degenerated and apoptotic cells, ciliary disorganization and ciliary loss in the epithelial cells, epithelial metaplasia, alteration of normal chromatin distribution and karyolysis in nuclei, changes in the basal cells, and lymphocytic infiltration. The histopathological changes were more severe in group D.
CONCLUSION: Radiofrequency radiation at 2100 MHz damaged the nasal septal mucosa, and disturbed the mucociliary clearance. Ciliary disorganization and ciliary loss in the epithelial cells resulted in deterioration of nasal mucociliary clearance.
http://1.usa.gov/1HM93v5
Note: I do not have access to this paper.
--
Center for Family and Community Health
School of Public Health
University of California, Berkeley
Electromagnetic Radiation Safety
Website: http://www.saferemr.com
Facebook: http://www.facebook.com/SaferE
News Releases: http://pressroom.prlog.org/
Twitter: @berkeleyprc
No comments:
Post a Comment